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Abstract - -Turbulent  gas-liquid stratified flow in near horizontal, straight ducts with a regular two 
dimensional wavy deformation of  the interface has been studied. In this flow regime strong mean 
secondary currents are observed. By applying the Generalized Lagrangian Mean Theory of  Andrews and 
Mclntyre  (1978a) it is shown that these secondary velocities in the liquid phase may result from an 
interaction between wave psuedomomentum per unit mass  and mean axial velocity. This interaction takes 
exactly the same form as the Craik and Leibovich 'vortex forces' (Leibovich 1983) for Langmuir  
circulation in the oceans, but with wave pseudomomentum per unit mass replacing Stokes drift. For a 
particular case it is shown that the wave p seudomomen tum-mean  flow interaction is identical to a wave 
Reynolds stress formulation. Predictions with a numerical implementation of the developed model 
compares favourably with the experimental results of  Suzanne (1985). © 1997 Elsevier Science Ltd. All 
rights reserved. 
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1. I N T R O D U C T I O N  

Fully developed turbulent gas-liquid stratified flow in near horizontal ducts is considered. In the 
stratified flow regime Hanrat ty and Engen (1957), Akai et al. (1977), Suzanne (1985) and others 
have identified a subregime with quite regular deformation of the interface with 2-dimensional 
waves or 3-dimensional 'pebbled' structures. Akai et al. (1977) found that the auto-correlation 
function for the interface location was periodic for both two and three dimensional deformations, 
with less distinct periodicity for the three dimensional structure. Suzanne (1985) reported one 
narrow peak in the wave-energy spectrum for the two dimensional waves and two peaks for the 
three dimensional waves, one dominant and a smaller at the double frequency. He also reported 
variations in the wave amplitudes across the duct with the higher amplitudes close to the lateral 
walls. Together with this regular wave field, Suzanne (1985) observed strong mean secondary flow 
which formed a cellular structure with two rolls in the liquid phase and two rolls in the gas phase. 
Liquid was flowing up near the walls and down in the middle of  the duct, and gas was flowing 
down near the walls and up in the middle. 

The purpose of this work is to discuss and model mechanisms generating the secondary flow 
field in the liquid phase. 

At least two sources for generation of such secondary flow could be considered. Turbulence 
induced secondary flow (Prandtl's secondary flow of  second kind) are known to exist in pipes with 
non-circular cross section. Einstein and Li (1958) showed theoretically for single phase turbulent 
flow in a straight conduit that anisotropy in the turbulent Reynolds stresses may introduce axial 
mean vorticity. Naot and Rodi (1982) applied an algebraic Reynolds stress model to predict 
turbulence generated secondary currents in open channel flow with a free surface not disturbed by 
waves, and Nezu and Rodi (1985) measured secondary velocities in open channel flow and related 
these flow to the turbulence. In Naot  and Rodi's computations and the measurements of  Nezu and 
Rodi the secondary velocities attain their largest values close to the lateral walls with relatively 
small values a few liquid heights away from the lateral walls. This coincides with Suzanne's (1985) 
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findings of no secondary currents in the middle of the duct when the interface was not disturbed 
by waves. The distance from the lateral walls to the middle of the duct for Suzanne's case was about 
2.5 liquid heights. However, as already mentioned, with the onset of regular waves at the interface, 
Suzanne (1985) reported strong mean secondary velocities in the middle of the duct with weaker 
secondary velocities towards the lateral walls. This indicates that the secondary currents could be 
induced by the wave field. In this work we focus on modelling wave generated secondary flow, and 
the effect of turbulence is modelled applying a standard k-(  model which is known not to be able 
to predict turbulence generated secondary flow. 

There is a resemblance between our case and Langmuir circulations occurring in the oceans. 
When the wind blows over a water surface and generates waves, numerous streaks parallel to the 
wind direction may be observed. Langmuir (1938) related these streaks to convergence lines 
between counter rotating vortices below the surface. Different mechanisms for generating 
Langmuir circulation have been proposed in the literature. Craik and Leibovich (1976), Craik 
(1977) and Leibovich (1977) presented models where the vortices are induced by interactions 
between the wave field related Stokes drift and a weak wind-induced shear flow. These models have 
been divided into two classes denoted CLI and CL2. Leibovich (1983) reviewed the subject and 
discussed the two CL mechanisms in terms of ~vortex forces' in the vorticity equation given by 

S,,L, go,,: 

Here g,s, W and i: denote Stokes drift, mean flow velocity and the unit vector in the wind direction, 
respectively, x is horizontal coordinate perpendicular to the wind and y is the vertical coordinate. 
Subscripts ,x and ,y mean differentiation with respect to x and y. 

In the CLI models, the wave field is composed of two crossing linear waves propagating with 
equal and opposite angles to the wind direction. This gives a Stokes drift which varies in the x 
direction. The mean shear flow varies in the y direction and vorticity is produced by a nonzero 
Sce, term. 

The CL2 models are based on an instability mechanism. A perturbation of the mean shear flow 
gives a small variation with x. Since the Stokes drift varies with y, a nonzero S~.u_, term induces 
vorticity and cross stream motion which amplifies the perturbation. 

An important difference between flow in the ocean and in ducts is the relative magnitude between 
the mean shear flow and the wave perturbation. In the Craik and Leibovich models the wave field 
is developed in a perturbation series in the wave steepness ~,<< 1. To first order the wave field is 
given by an irrotational wave solution, with the traditional Stokes drift to second order. The mean 
shear flow is assumed to be weak of o(~,). In duct flow we have a strong shear flow of O(1) giving 
a rotational wave field of O(c~). Nevertheless, Benkirane et al. (1990) applied a CL2 model for duct 
flow and obtained secondary velocities which agreed well with Suzanne's (1985) measurements. 

In a model by Nordsveen and Bertelsen (1993) it was assumed that the wave field was composed 
of two crossing linear wave trains which interacted with a strong mean flow giving a rotational 
wave solution. An averaging procedure (Reynolds and Hussain 1972) with a decomposition of the 
flow field f into a mean component F, a wave component .y and a turbulent component .f' was 
applied to the Navier-Stokes and continuity equations for incompressible flow. The mean flow 
momentum equations became 

V . ( V V )  = 1 VP + V@ - V.(v'v') - V.(~-~), [2] 
P 

where V is mean velocity, p is density, P is mean pressure and V* is the gravity force per unit 
mass. Turbulent Reynolds stresses per unit mass R__' = - v'v' were modelled with a k-e model while 
the wave Reynolds stresses per unit mass/~ = - ~  were calculated from the simultaneous solution 
of a momentum equation for the wave field where the mean axial velocity's variation with depth 
was taken into account. These wave Reynolds stresses became a source for mean secondary flow. 
However, the predicted secondary flow were small compared with the reported experimental results 
of Suzanne (1985). In this model there is an interaction between two crossing wave trains and the 
vertical variation of the mean axial velocity. There is thus some resemblance to the CL1 model. 
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In an attempt to analyze the strong mean flow case (duct) further, we decided to apply the 
Generalized Lagrangian Mean (GLM) theory of  Andrews and McIntyre (1978a). Leibovich (1980) 
applied this general theory for wave mean flow interactions to rederive the CL theories. A 
motivation for adopting the GLM-theory is well expressed by Leibovich (1980): " . . .  the 
introduction by Leibovich and Ulrich (1972) of the ordering incorporated in the CL theories--an 
ordering generally in accord with observed motions involving wind-generated waves and currents 
in the ocean--was an essential step in the derivation of  equations describing nonlinear rectified 
effects of  waves on currents by the CL method. By contrast, the G LM equations of AM describe 
such rectified effects without the need to invoke the CL assumptions, and suggest that some of  the 
essential mathematical structure underlying the existence of Langmuir-circulation instability might 
carry over into conditions under which the CL equations do not apply: in particular, when wave 
orbital speeds are not large compared to mean currents (so the waves can no longer be essentially 
irrotational) . . . " .  

Craik (1982a, 1982b) applied the GLM theory in an investigation of  hydrodynamic stability of 
parallel shear flow. Due to a resemblance to the case studied here, we have been able to utilize 
some of his results. Magnaudet (1989) made a thorough analysis of wavy stratified duct flow and 
investigated also the interactions between waves and turbulence. We have not taken such 
interactions into account in this work. 

In section 2 we present the mathematical model and compare it with the model by Nordsveen 
and Bertelsen (1993) as well as the Craik and Leibovich models. In section 3 the numerical method 
is presented and in section 4 predictions with the developed model are presented and compared 
with the experimental results of Suzanne (1985). A discussion of  the results and the conclusions 
are found in section 5. 

2. THEORY 

A sketch of  the flow problem in a near horizontal duct is given in figure 1. A Cartesian coordinate 
system (x, y, z) is used, where for a horizontal duct, x is the horizontal, spanwise direction, y is 
the vertical direction and z is the axial direction. The inclination angle of  the duct is denoted 7. 
The bottom of  the duct, the mean liquid height and the lateral walls are given by y = 0, y = HL 
and x = _+ Lw, respectively. 

We investigate the flow in the liquid which is assumed incompressible and Newtonian under the 
influence of  a constant gravitational field. As briefly reviewed in the introduction, observation on 
the flow problem considered in this paper, indicate that the flow field may be depicted as being 
composed of  a steady, a periodic and a randomly fluctuating (turbulent) component. The observed 
(Suzanne 1985) deformation of  the interface indicate that the regular interface deformation can 
be modelled by linear harmonic waves. Waves tend to be linear when 

~1 ~--- max(a/2, a/HL)<< I [3] 

where a and 2 are the amplitude and length of the waves, respectively. The mean secondary 
velocities are small compared with the mean axial velocity. This means that 

e2 = m a x ( U / W B ,  1//I4"8)<< 1, [41 

Y 
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(b) 
Figure 1. A sketch of the duct flow problem. (a) Axial cut. (b) Cross section. 
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where U, V denote the mean velocity components in the x and y directions, respectively, and W~ 
is the bulk velocity. 

2.1. Conservation equations 

The flow is governed by the following continuity and momentum equations 

V.v -- 0, [5] 

v, + V.(vv) = -1_ Vp + X + VO. [61 
P 

Here v is velocity, p is pressure, p is density, V@ = (0, - g cos 7, g sin 7), X = vV2v, g is acceleration 
of gravity and v is molecular, kinematic viscosity. Subscript ,t means differentiation with respect 
to time t. 

We will develop the mathematical models along two paths, named the Eulerian and the G L M  
approach. The Eulerian approach was used by Nordsveen and Bertelsen (1993) while the G L M  
approach is novel to this work. In the following f (x ,  t) will denote different flow field quantities. 
We use the phase average of Reynolds and Hussain (1972) 

<j(x,  t)> = lim 1 ~ J(x, t + nr), 
~ ' ~  ~- ~ n = 0 

[7] 

where r is the period of the regular wave component,  and a time average 

i i .  2 
f (x)  = lira f (x ,  t)dt. [8] 

T ~ s  J T2 

Introducing the turbulent c o m p o n e n t f '  = f -  ( f  > and phase average [6] gives the phase averaged 
Navier-Stokes equations (see Reynolds and Hussain 1972) 

I V<p> + <x> + v<,~> - v.<v'v'>. <v>,, + v-(<v><v>) = - ~  [9] 

Eulerian approach. The flow field f is decomposed as f =  F + f + f ' ,  where F - - f  is the mean 
component,  f =  ( f  > - F is the wave component  and f '  = f -  ( f  > is the turbulent component.  
Applying this decomposition and the averages [7] and [8] to the basic equations [5] and [6] give 

v . v = 0 ,  v . ~ = 0 .  [10] 

1 
v . ( v v )  = - -  w '  + v .  - V . ( v ' v ' )  - v . ( ¢ ¢ ) .  

P 
I l l ]  

The flow studied is turbulent and we use wall functions to describe boundary conditions in the 
(turbulent) log-layer away from the walls. The molecular viscosity term is therefore neglected. The 
momentum equations contain now both a turbulent and a wave Reynolds stress tensor. To obtain 
a closed boundary value problem, we will calculate the wave velocity field ~ and model the turbulent 
Reynolds stresses. 

The momentum equations for the wave field are obtained as the difference between the phase 
averaged [9] and the time averaged [11] momentum equations (see Reynolds and Hussain 1972). 
These equations are simplified applying an order of  magnitude analysis where we utilize that 
W --~ WB, U -,~ V<< WB and ~<< WB. The difference between the phase averaged and time averaged 
turbulent Reynolds stress tensors are also neglected. Molecular viscosity effects are disregarded and 
we do not take into account the variation in the mean axial velocity across the width of the duct. 
This last simplification are not valid close to the lateral walls. However, we apply the model only 
to wide duct flow and the approximation is thus believed to be good over the main part of  the 
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calculation domain. The momentum equations for the wave field read 

~,, + IYZ.V~ = fI~.,i= + - _1 V/~, [12] 
P 

where 17V(y) = 1/(2Lw)~L~w W(x, y)dx, is the average of  the axial mean velocity over the width of 
the duct. The turbulent Reynolds stresses per unit mass are modelled using the generalized 
Boussinesq hypothesis 

2 
- v ' v '  = v,(VV + VV T) - ~ k J ,  [13] 

where J is the unit tensor, k is the turbulent kinetic energy per unit mass and v, is the eddy viscosity 
modelled by the k-E turbulence model v, = c, k2/E, where E is the dissipation rate of  k. We adopt  
the transport  equations for k and E as given by Rodi (1980) 

/ \ 
V.Vk = V-[  v' V k / +  v,(VV+ VVT):VV E ,  

O'k 1 / 
y - -  

P~ 

[14] 

v .v ,  : v . ( : ,  v , )  + * \a( ~ (c,,Pk -- C2,E). [15] 

The constants in the turbulence model are given in table 4. 
GLM approach. Instead of  the more direct procedure for developing the mean Eulerian 

momentum equations [11], we will now first develop mean Lagrangian momentum equations using 
the G L M  theory of Andrews and Mclntyre (1978a). These momentum equations are subsequently 
converted to mean Eulerian momentum equations. 

Central to the G L M  description is the mapping x -+ x + ~(x, t), where ¢(x, t) is a field related 
to a displacement about  the position x. The following notatio__n is introduced 
. f i ( x , t ) - f ( x + ~ ( x , t ) , t ) ,  and an e x a c t  Lagrangian mean operator ()L is defined by 
f (x ,  t) L = f ( x ,  t), where in our case ( ) is the time average [8]. That  is, for each x the average is 
taken over the positions x + ~(x, t). It is required that ~(x, t) = 0 implying that ~ is a disturbance 
quantity. The fluctuation f in the G L M  theory is defined a s f  = f  _ i n  and it follows t h a t f  = 0. 

The phase averaged momentum equations [9] are now evaluated in the displacement points 
x + ~, multiplied by V(x + ~) and time averaged using [8]. The displacement ~ is related to the 
phase averaged field and not the total field. The resulting equations read 

/3L(~ L -- P) + V~L'(~ L -- P) = - V ~  - ~:L __ V~'X' -- V(x + q) .V-(v 'v '> [16] 
-¢ 

IV 

where ~ =fiL/p + ~L__ V~.V~/2. Comparing with theorem I, section 3, [3.8] in Andrews and 
McIntyre (1978a), this equation has the additional term IV due to the separation of  the total field 
into a turbulent field and a phase averaged field. P is the wave pseudomomentum per unit mass, 
which is given by 

P = (P~, Py, P:) = - V ~ . v  I. [17] 

Here, v ~ is the fluctuating part  of  the Lagrangian velocity field, which for small amplitude waves 
is expressed as v I = ~¢ + ~.VV + O(E~). The equations [16] are equations for the Lagrangian mean 
field. In appendix A these equations are expressed in terms of  the Eulerian field assuming small 
amplitude waves and neglecting interactions between waves and turbulence. We obtain 

V.(VV) = -VTz - V.v'v'  + ~s × V × V + (V+  U) × V × (U - P) [18] 
k ) 

with g = fiL/p + ¢~L __ V'~¢/2 + V.(U - P). ~s is the Stokes drift which is defined as the difference 
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between the mean Lagrangian and the mean Eulerian velocity. It should be noted that the 
assumption of  small amplitude waves is only used to simplify the expression for ~ and the turbulent 
Reynolds stress tensor. The wave field mean flow interaction term S is also valid for large amplitude 
waves. For  an order ~ disturbance ~ (small amplitude waves) the Stokes drift can be expressed as 

= +  :vvv + [19] 

For  a weak Eulerian mean shear flow of  o(~)  disturbed by a linear irrotational wave field o f  O(~),  
Andrews and McIntyre  (1978a) showed [6.9] that P = ~s + O(c~). In that case the S-term in [18] 
simplifies to the Craik and Leibovich source for Langmuir  circulation 

gc~ = ~s x V × V. [20] 

For  waves on strong mean shear flow of  O(1) P ~ ~s. The terms S and ~z are simplified applying 
an order o f  magni tude  analysis where we utilize that W ~ WB, U ~ V<< W~, ~<< W~ and assume 
that P~ ~ P,<<P: and ~s ~ gs<< ~;,s. For  the wave field model  used in this work P, = P,. = 0 and 
fis = gs = 0. The m o m e n t u m  equations [18] are now given by 

V.(VV) = -VTr - V.v'v '  + P - w , i ,  + P~ W~i~, [21] 

where ~ = ~L/p + @L _ ~.r¢/2. The equat ions [21] are the mean m o m e n t u m  equations used in this 
work.  The turbulent Reynolds stresses are modelled as in [13]-[15]. The wave field is given by the 
solution o f  the m o m e n t u m  equat ions [12] and the continuity equat ion [10]. 

Taking the curl o f  equation [21] we obtain the vorticity equation 

V × V.(VV) = - V  x V.v'v' + ( P : . ~ W ,  - P:., W~)i:. [22] 

Compar ing  with the Craik and Leibovich 'vortex forces' [1], we see that wave pseudomomentum 
per unit mass replaces Stokes drift in the source for axial vorticity. 

2.2.  Boundary  conditions 

We assume linear waves and prescribe boundary  conditions at the mean interface. The validity 
o f  this approach  is discussed in section 2.3. 

The wave f ieM.  The applied boundary  condit ions for the wave field are 

+ = .y = [231 

t~ -- Pgrl = O ,y = H,., [24] 

= 0  , y = 0 ,  [25] 

= 0 ,x = +_Lw. [26] 

Suzanne (1985) reported a variat ion o f  the wave amplitude across the width of  the duct with about  
a doubl ing o f  the ampli tude f rom the center towards the lateral walls. Magnaudet  (1989) related 
this to the lateral variation in the axial velocity with the occurrence o f  caustics focussing the wave 
energy. However,  this lateral variation in the mean axial velocity is not  taken into account  in our  
wave field m o m e n t u m  equation. 

We have used two models for the interface deformat ion r/. In the interfacial model  A the interface 
is deformed by two crossing wave trains propagat ing with equal and opposite angle to the axial 
direction. This gives 

t / =  2a sin fix sin[~(z - ct)], [27] 

where a is the ampli tude o f  each wave, fl and 7 are wave numbers  and c is the wave speed. A 
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corresponding wave velocity field obeying the boundary conditions, the wave continuity and 
momentum equation is given by 

ti = 2~b~(y)cos fix cos[~(z - ct)], [28] 

= 2~b, (y)sin fix cos[~(z - ct)], [29] 

= 2q~-(y)sin fix sin[~(z - ct)], [30] 

with fl = n/(2Lw). ~b, is given by Rayleigh's stability equation 

( I ~ -  c)(q~,,,,.,,- k~.~,,) - ~b,, I~,,,,, = O, [31] 

where k,  = x / ~  + f12 is the wave number. This equation subject to boundary conditions obtained 
from [23]-[25] is solved numerically, q~,(y) and q~,(y) are expressed in terms of ~b,.(y) as 

- W -  c} '  [321 

q~-(Y) = k,, ~2 W -  c j" - 3  d~,,,.+ [33] 

In this first model for the interface deformation, the wave amplitude variation is overestimated. 
In the interfacial model B the interface is deformed by one wave train propagating in the axial 

direction giving no wave amplitude variation. The interface deviation and corresponding velocities 
are given by 

r /=  2a sin[k,(z - ct)] [341 

a = o, [35] 

= c~,(y)cos[k,(z - ct)], [36] 

~ = - ~ s i n [ k .  (z - ct)]. [37] 

~b, is once more obtained from the solution of Rayleigh's stability equation. 
The meanfield.  In solving the equation set, a long section of  the duct is regarded. A unidirectional 

uniform mean velocity field as well as a uniform turbulent field are specified as inlet conditions. 
The length of the duct is adjusted entailing a fully developed flow field at the outlet of  the duct. 
Symmetry conditions are applied for the mean flow field at the middle of  the duct x = O. At the 
bot tom and lateral walls the wall shear stress r ,  is found from inverting the l o_garithmic wall 
function for the tangential velocity component  UT = u~ ln(Ey~)/x,  where u~ = x / r , / p  is the friction 
velocity, y+ = yu~/v is a dimensionless wall distance, y is the distance from the wall, x = 0.42 and 
E = 9.0. The wall shear stress (decomposed into the Cartesian directions) becomes the boundary 
condition for the velocity components  parallel to the walls. The velocity component  normal to the 
walls is set to zero. k and ~ are specified in the logarithmic wall layer by k = u2~/x/-~ and E = u3/(xy). 
At the mean interface a zero stress condition U, = 0 apply for the U velocity component.  For  the 
V velocity component  a zero mean momentum flux normal to the mean interface is specified. The 
boundary condition for the W velocity component  at the mean interface is prescribed by the 
interfacial shear stress z,(x) condition 

/~-----~/ 1/4 

z,.(x) = r,(0) ,y = HL, [38] 

developed by Nordsveen and Bertelsen (1993). The value ri(0) is taken from experiments. The 
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T a b l e  1. L inea r i za t i on  a n d  T a y l o r  series e x p a n s i o n  c r i te r ia  fo r  the 
in te r fac ia l  b o u n d a r y  c o n d i t i o n s  

a i H i  << I a/,;. << I u/S~<< 1 a/g)2<< I 

T a b l e  2. Va lues  o f  the a b o v e  c r i te r ia  where  expe r imen ta l  d a t a  o f  
S u z a n n e  (1985) a n d  m o l e c u l a r  viscosi ty a re  used  

a / H l  ~ 0.04 a /2  ~ 0 .017 a/61 ~ 6.3 a/g)2 ~ 0.6 

boundary condition [38] models the decrease in the interfacial shear stress towards the lateral walls. 
The interfacial boundary conditions used for k and ~ are 

k ,  = 0  , y = H L ,  [39] 

= k ~ / ( 0 . 1 8 / 4 0  ,y -- H~. [40] 

These interfacial conditions for k and c were used by Celik and Rodi (1984) for turbulent open 
channel flow and the boundary condition for ~ was chosen to obtain the correct decrease in eddy 
viscosity towards the interface. A zero gradient condition for ~, together with the k-~ turbulence 
model used here was found to give the maximum eddy viscosity at the interface. 

2.3. Validation o f  the interfacial description 

In the above presented model boundary conditions for the mean and wave field are prescribed 
at the mean interface y = HL. Some remarks about the validity of this approach are appropriate. 
The usual conditions for Taylor series expansion and linearization of the free surface boundary 
conditions about  a mean free surface are a/),<< 1 and a/HL<<I (~<< 1). Longuet-Higgins (1953) 
pointed out the existence of a viscous oscillatory boundary layer at a free surface disturbed by 
waves. The thickness of  this layer is approximately given by & -- (2v/e)) ~,'2, where ~ is the wave 
frequency. The corresponding condition for the Taylor series expansion and linearization about  
the mean surface is a/(5~ <<1. In our case we also have a mean boundary layer 62 at the interface 
due to the mean shear stress from the gas. The phase averaged interface is given by y = HL + ;7. 
Turbulent fluctuations at the interface are ignored and we Taylor series expand the kinematic 
interfacial boundary condition for the wave field about  the mean interface and neglect all nonlinear 
terms but one. The condition then reads 

[411 

The nonlinear term can be neglected if a ~/ , /17/= a/(~2<<l with (52 = I~ /~ / , .  The second boundary 
layer can be stipulated using the relation z,/p = (v , )W,  at the interface with v, = 1.0 x 10 ̀ 6 m2/s, 
the molecular viscosity. This gives a minimum thickness of di2, since some turbulence will remain 
even at the interface entailing a larger eddy viscosity. 

It is now interesting to check the linearization criteria, listed in table 1, applying physical data 
listed in table 3. Molecular viscosity is used to calculate both & and 62. The result is presented 
in table 2. The third criterion in the table 1 is hardly fulfilled while the last criterion possibly is, 
depending on the eddy viscosity. 

The conclusion is that the separation into a mean, a wave and a turbulent field with boundary 
conditions prescribed at the mean interface cannot capture the effect of  the oscillatory boundary 
layer & in Suzanne's experiments (1985), but the thicker possible more important  mean flow 
boundary layer 62, can be modelled. This is reflected in our momentum equation for the wave field 
where viscous effects are neglected. 

T a b l e  3. E x p e r i m e n t a l  d a t a  o f  S u z a n n e  (1985) 

r ; / p  ~ 0 .000256  m 2 / s  2 Win, ~ 0.5 m/s  a ~ 0 .0017 m Hr. ~ 0.03 m ~ ~ 0.1 m co ~ 55 H z  
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2.4. Comparison between the Eulerian and the GLM approach 

We will no compare the Eulerian approach used by Nordsveen and Bertelsen (1993) and the 
G LM approach used in this work. In the two mean momentum equations [11] and [21], the possible 
wave field source for mean secondary velocities is represented with the wave Reynolds stress tensor 
and the wave pseudomomentum term g = S~i, + ~ i , ,  respectively. Taking the curl of  these 
equations, developing the vorticity equation, the gradient terms disappear and it follows that 

V x [-- V.(~)] = (P:., W, - P:., W~)i:. [42] 

~o, S% 
We will verify this equality for the wave field given by [23]-[33] which is based on a W-velocity 
averaged over the width of the duct. The equality [42] is then reduced to 

V x [ - V . ( ~ ) ]  = e:., W,.i:. [43] 

Sal,, 

The displacement field ¢, needed to calculate P, is developed in appendix B and reads 

2~bx(y)cos fix 
¢ " -  c~(W- c) sin[cqz - -  ct)] [441 

2q~.,.O')sin fix sin[c~(z -- ct)] [45] 
~' = a ( W - -  c) 

--2 sin fix {/I~,,4b, (y) ) 
~-- = - ~ 7 7 ~ - ~  ~ ~  + 4b:(y) cos[a(z - ct)]. [46] 

From the wave field velocities, the displacements and the mean axial velocity, it follows that 
P, = p,. = 0 and the axial component P: and Sn,, become 

-/'sin2flx'~[-a2 \ )L p- f12 1 2~b7 

- 2 2 1 [481 

Inserting the wave field velocity components [28]-[30] in the left hand side of [43] the identical 
expression is obtained. The source [48] was the one used by Nordsveen and Bertelsen (1993). 

With the GLM approach the secondary velocity source is expressed as a product of wave 
pseudomomentum per unit mass and mean axial velocity. This means that even though the 
transversal mean shear is disregarded in calculating the wave field (and pseudomomentum), it can 
be taken into account in the source term. Doing this we model the effect of both the Sn~ and S~2 
terms. 

2.5. Stokes drift 

Andrews and McIntyre's generalized Stokes drift follows from the Stokes correction equation 
[19] and is given by 

7s = ~'V~ + ~ :  O(E~). [49] 

~1 ~ ~ 
The term ~s is the original Stokes drift term and ~s is an additional term due to the curvature of 
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r 

F = k,~,V 

] (P) = Const. 

W Y ~ L ( V )  

J 

Figure 2. Sketch of solution procedure. 

the mean  O(1) veloci ty field. In t roduc ing  wave field velocities and  d i s tu rbance  field for crossing 
waves and  the mean  axial  veloci ty in [49], it fol lows that  ffs = fs = 0 and 

where  

~.s = B, cos2fl, - Be sin2fix, 

B , -  2flq)xq6= 
~ ( ~ -  c) 

2od q5 ~ [ ( f12 f14"~ q3 ,. l~. ,. 3 2 (o ~ 
Bz-fik~,.-_-~--c) c~,,.v+ 2~+ ,j$_cj+~-~_c+ 

[501 

¢-(~ - c ) 2 "  

3. N U M E R I C A L  M E T H O D  

The general  pu rpose  compu te r  code  P H O E N I C S  (Ros ten  and Spald ing  1987) has been adjus ted  
to solve our  b o u n d a r y  value p rob lem.  In P H O E N I C S  a Car tes ian ,  s taggered grid is adop ted ,  and  
a con t ro l  vo lume m e t h o d  is app l ied  to develop  finite difference equat ions  which are solved in an 
efficient fo rward  march ing  so lu t ion  procedure .  Tha t  is, the equa t ions  are pa rabo l i zed  in the axial  
d i rec t ion  and  two d imens iona l  equa t ion  systems are solved over  the cross section, s tar t ing at  the 
inlet o f  the duct  with prescr ibed  b o u n d a r y  condi t ions ,  march ing  dow ns t r e a m until  a fully deve loped  
state is ob ta ined .  See figure 2. 

4. P R E D I C T I O N S  

Predic t ions  with three different models  have been per formed.  In models  1 and  2 we used the 
interracia l  mode l  A with cross ing waves. In  mode l  1 only the SL source in [21] was taken  into 
account .  F r o m  the analysis  in sect ion 2.4, mode l  1 is the G L M  coun te rpa r t  of  the mode l  deve loped  
by Nordsveen  and Bertelsen (1993). In mode l  2 bo th  the SI and  the $2 sources were taken  into 
account .  In model  3 we used the interfacia l  mode l  B, with a wave t rain p r o p a g a t i n g  in the axial  

Table 4. Constants in turbulence model 

c, = 0.09 a~ = 1.0 a, = 1.3 ct, = 1.44 c2, = 1,92 

Table 5. Constants in wave model 

a = 0.0012 m c~ = 62.83 m -I fl = n/(2Lw) k,, = 64.77 m 
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Table 6. Other model parameters 

HL = 0.0315 m Lw = 0.1 m r~(0) = 0.256 N/m 2 WB = 0.476 m/s 
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direction. With this interface description only the ~ source is nonzero. The model parameters are 
as given in tables 4-6. 

4.1. Wave f ie ld  

We compare our rotational wave field solution with an irrotational wave field for two crossing 
wave trains. The irrotational wave field is the solution of the Laplace equation with the same 
boundary conditions as applied for the rotational wave field. The solid line in figure 3(a) represent 
the mean axial velocity averaged across the width of  the duct. The rotational wave field is based 
upon this velocity distribution. The dotted line in figure 3(a) represent the cross section averaged 
mean axial velocity WB. 

In figure 3(b) we have plotted wave pseudomomentum per unit mass and Stokes drift at the 
lateral walls where they obtain their largest values. The solid and dashed lines is respectively the 
wave pseudomomentum and generalized Stokes drift for the rotational wave field, while the dotted 
line is the wave pseudomomentum and Stokes drift for the irrotational wave solution, which to 
second order in E~ are identical. The generalized Stokes drift attains negative values close to the 
interface and is significantly different from the Stokes drift based on the irrotational wave field. 
Wave pseudomomentum is quite similar for the two wave fields. Since in the duct flow problem 
it is pseudomomentum which enters the source for secondary velocities, it follows that these sources 
is qualitatively similar to Craik and Leibovich sources for Langmuir circulations where Stokes drift 
based on an irrotational wave field is used. This support the findings of Benkirane et al. (1990) 
who applied a CL2 model to predict secondary velocities comparing well with the duct flow 
measurements of Suzanne (1985). 

The amplitude of the wave field velocity components, given by 2q~x, 2~b, and 2~b, in [28]-[30], 
are plotted in figure 4. Here the solid lines represent the rotational wave field and the dotted lines 
gives the irrotational wave field. Most noticeable is the decrease in the amplitude of the axial wave 
velocity 2~b: towards the interface for the rotational wave field. This is caused by the increase of  
the mean axial velocity towards the interface, as seen in figure 3(a), and is an effect of the mean 
boundary layer 62. The wave speed c is predicted to be 0.883 m/s while Suzanne (1985) measured 
c -- 0.88 m/s in the central part of  the duct. The maximum axial velocity W is about 0.6 m/s giving 
c > max(If/) which implies that there is no critical layer present. This is important since the validity 
of the mapping in the GLM theory fails with the presence of a critical layer. 
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• /WB P.CX.., y)/wa 
Figure 3. (a) Averaged axial mean velocity. (b) Stokes drift and wave pseudomomentum at lateral wall 
for crossing wave trains. Dotted line is Stokes drift and wave pseudomomentum for irrotational waves. 
Dashed and solid lines are Stokes drift and wave pseudomomentum for rotational waves, respectively. 
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Figure 4. Amplitude of wave field velocity components for crossing wave trains. Rotational 

solution--solid line. lrrotational solution dotted line. 

4.2.  M e a n  ax ia l  vor t ic i ty  sources 

The vorticity source Sat and Sa2 for crossing waves (rotational) are shown in figures 5 and 6, 
respectively. In figure 7, Sa: for the wave field used in model  3 is plotted. In model  1 and model 
2 the wave amplitude in the middle o f  the duct is zero. In model  3 the amplitude is the same all 
over the width o f  the duct. Suzanne (1985) reported about  a doubl ing of  the amplitude f rom the 
middle towards  the lateral walls. We chosen the amplitude 2a to be less than the measured value 
close to the lateral walls and larger than the measured amplitude in the middle of  the duct. It follows 
that  Sm in the central part  o f  the duct is underest imated in figure 6 and overestimated in figure 
7. Close to the lateral walls Sn2 is underest imated for both models 2 and 3. It is seen that Sm is 

Middle of Interface 

0.006 
0.004 
~.002 

0 

Bottom Lateral wall 

Figure 5. The vorticity source Sn~ (He; WB):, crossing waves. 
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0.08 
0.06 
0.04 
0.02 

0 

Bottom Lateral wall 

Figure 6. The vorticity source ,.~m (HL/Wa) 2, crossing waves. 
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M i d d l e  of  a c e  
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l o . o 4  

Bottom Lateral wall  

Figurc 7. The vorticity sourcc S~, (HUWB) 2, model 3. 

up to one order of magnitude larger than S~. Utilizing that max(sin fix cos f ix)  = 1/2 and that the 
wave field decrease exponentially (approximately) with depth we have 

max(~ ,  ) -- max(P:,~ W,) "~ max(/~P: W,) [51] 

max(S~2) = max(P:., W, ) ~ max(2k. P: W~). [52] 

For  the case simulated fl .-- 16 and k,, ~ 64 giving that 

max(P:.,) ~ 8max(P=.~). [53] 

Away from the lateral walls W, is larger than W~ due to the imposed shear stress from the gas 
while close to the lateral walls W ,  is slightly larger than W,. We conclude that the large difference 
in the two sources is mainly caused by a larger gradient of  wave pseudomomentum with depth 
than in the spanwise direction. With considerable longer wave lengths in the axial direction and 
the same wave length in the spanwise direction we would, with the proposed model, obtain 
S,~ ~ Sm or even S~ > S~2. However, to our knowledge, such flow conditions (very long 
waves--secondary flow) have not been reported in the literature. 

4.3. M e a n  secondary velocities 

In figure 8 vector plots of  the secondary motions are presented over half the cross section. In 
figure 9 predicted vertical velocities are compared with experimental results of Suzanne (1985) for 
three different verticals. All three models predicts secondary velocities flowing up at the walls and 
down in the middle of the duct. Model ! fails to reproduce the observed strength of  the secondary 
velocities. This indicates that the interaction between the lateral variation of  the wave field and 
the vertical variation of  the mean axial velocity are not the cause for the strong mean secondary 

I n t e r f a c e  

e~  
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1 4  . . . . . . . . . . . . . . . . . . . . . . . . . . .  * ' * *  
I I  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ' , 1  

I I '  . . . . . . . . . . . . . . . . . . . . . . . . .  , ' , W  

Y 
L .  x , . 10 m/ s  B o t t o m  wall 

Figure 8. Secondary velocity field. 
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Figure 9. Vertical mean velocity 0, 6 and 9.3 cm from the middle of the duct. Triangles represent 
experimental results of Suzanne (1985). Lines represent simulations. Dotted line--model 1, dashed 

line--model 2, solid line--model 3. 

velocities. Model 2 predict velocities with the correct magnitude at the walls, but not in the middle 
of the duct, while model 3 reproduce secondary velocities of correct magnitude at all three verticals. 
The interaction between the vertical variation of  the wave field and the lateral variation of  the mean 
axial velocity gives mean secondary velocities of  correct magnitude. As discussed above the mean 
axial vorticity source (secondary velocities) is underestimated in the middle of the duct in model 
2. Close to the lateral wall, figure 9(c), the predictions shows a different behavior than the 
experiments with higher values close to the bottom. This may be due to the neglect of the horizontal 
shear flow when calculating the wave field. Especially close to the lateral walls the shear is large 
with a possible important influence on the wave field. Another limitation in our model is the neglect 
of turbulence generated secondary velocities known to exist in corners. 

4.4. Mean axial velocity 

In figure 10 predictions and experimental results (Suzanne 1985) of mean axial velocities are 
shown. Again best agreement between predictions and experiments are obtained for model 3. 
However, the axial velocity is overpredicted in the middle of the duct and underpredicted close 
to the lateral wall, This underprediction of lateral mixing can be caused by both slightly too small 
secondary velocities and too small eddy viscosity. 
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5. DISCUSSION AND CONCLUSION 

In this paper mechanism for generating secondary velocities in regular wavy stratified duct 
flow has been analyzed. The flow field was decomposed in mean, regular linear wave and 
irregular turbulent components. In ducts the mean shear flow is of  O(1), and the linear wave 
field of O(E~) becomes rotational. The Generalized Lagrangian Mean (GLM) theory of  
Andrews and Mclntyre (1978a) was used to develop an expression for the wave-mean flow 
interaction. For a particular case it was shown that the G LM formulation is identical to an 
Eulerian approach with wave Reynolds tensor formalism. However, the interpretation of  the 
wave-mean flow interaction is significantly different in the two approaches. In the Eulerian 
approach the wave Reynolds tensor is given the interpretation of  stresses acting upon the mean 
flow in such a way that mean secondary velocities are induced. In the GLM approach secondary 
velocities result from an interaction between wave pseudomomentum per unit mass and mean 
velocity. 

The direct interactions between waves and turbulence are disregarded, A discussion of the 
oscillatory boundary layer at the interface indicate that including such effects cannot be done with 
prescribed boundary conditions at a mean interface as used in this work. This was also concluded 
by Magnaudet (1989) who proposed to solve phase averaged momentum equations in curvilinear 
coordinates avoiding Taylor series expansions about a mean interface. 

We have compared our model for duct flow with Craik and Leibovich (1976, 1977) CL models 
for Langmuir circulation in the oceans. In the CL models, an O(E~) Stokes drift (based on a linear 
O(E~) irrotational wave field) interacts with a weak mean flow of o(E~) and generates secondary flow. 
In the above models the mechanisms are exactly the same in duct flow as in the ocean, but with 
wave pseudomomentum per unit mass replacing Stokes drift. It is then interesting to note that for 
the irrotational wave field applied in the CL models, Stokes drift and wave pseudomomentum are 
identical to O(E~). Our numerical predictions shows that for our rotational wave field applied in 
ducts the generalized Stokes drift and wave pseudomomentum are significantly different. However, 
wave pseudomomentum for the irrotational and the rotational wave field are quite similar. This 
support the findings of  Benkirane et  al. (1990) who applied a CL2 model with irrotational wave 
field to predict secondary velocities comparing well with the duct flow measurements of Suzanne 
(1985). 

In solving the coupled equation system the horizontal gradient in the mean axial velocity is 
disregarded in calculating the wave field, but taken into account in the source ~ = Sji, + S2i, in 
[21] generating the secondary velocities. The predicted flow field compared favorably with the 
experimental results of Suzanne (1985). We discussed the different mechanisms for generating 
secondary velocities in terms of mean axial vorticity sources [42] and observed that the Sn~ source 
was up to one order of  magnitude larger than the Sn, source. That is, the secondary velocities is 
mainly generated through an interaction between the lateral gradient in the mean axial velocity 
and the decrease width depth of wave pseudomomentum. 

With the wave field used the gradients of pseudomomentum is about 8 times larger in depth than 
in the spanwise direction. The spanwise gradient of the mean axial velocity close to the lateral walls 
become of the same order of magnitude as the vertical gradient of the axial velocity close to the 
interface. In combination this gives a Sn~ source larger than Sn,. It is worth to note that with 
considerable longer wave lengths in the axial direction and the same wave length in the spanwise 
direction we would, with the proposed model, obtain Sn, ~ Sn~. We have, however, no evidence 
for the existence of such a flow field. 

A limitation in our implementation is the neglect of the spanwise variation in the mean axial 
velocity when calculating the wave field (and the pseudomomentum). The horizontal gradient of 
the axial velocity is large close to the lateral walls and an improvement at this point could be 
considered. This is especially so since the comparisons between our predictions and Suzanne's 
experiments showed the largest discrepancy close to the lateral walls. However, near the lateral 
walls one also expect turbulence induced secondary velocities. The k-E turbulence model used in 
this work is not capable to predict this and the discrepancy could therefore partly be caused by 
the applied turbulence model. 
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A P P E N D I X  A 

Mean Lagrangian to Mean Eulerian Momentum Equation 

In section 2.3 we discussed the validation of the Taylor series expansion and linearization about  
the mean interface. It was argued that the effect of  a thin oscillatory boundary layer at the interface 
could hardly be captured by such an approach. On the other hand the mean boundary layer was 
found thick enough to justify this approach. In this work we neglected the effect of  the oscillatory 
boundary layer and apply Taylor series expansion and linearization about  the mean interface. 

A variant of  theorem I in Andrews and Mclntyre G L M  theory (1978a), developed in section 
2.1, reads 

/ ~ L ( ~ L  - -  p) + V ~ L . ( ~ L  - -  p) = -Vrc  - ~L __ V~'X' -- V(x - ~).V-<v'v'>, [54] 
k Y ,' ~ k ~¢" ) t .,~ ) 

I II  III  IV 

where 7r is given by 

1 1 ~ "V '~ (i)L" = _ j L  _ -2 v + [55] 

Term I. In the case studied, the mean Lagrangian velocity as well as the pseudomomentum are 
independent of  time, and term I is readily shown to obey the relation 

~L.V(~L - -  p) + V~L.(~L - -  p) = __~L × V x (~L __ p) + v[~L.(~L __ p)]. [56] 
k ~ k ) t j 

"v" Y ~"  

I Ia Ib 

The relation between the mean Lagrangian velocity, the mean Eulerian velocity and the Stokes 
drift is 

~L = V + ~s. [57] 

Using this relation, term Ia may be transformed to 

V - V V - ~ S × V  x V - ( V + ~ S ) ×  V × ( ~ s  p ) _ I / 2 V ( V . V ) .  [58] 

v 

The terms lb and Ic are gradient terms and are included in term II. 
Term H. With the above terms Ib and Ic, ~ becomes 

1 1 ~  1 
= ~ f f L  - -  2 V "V - -  ~ V ' V  "71- ~ L . ( ~ L  - -  p) + ~L. 7~ 

I Ia  I Ib  IIc IId IIe 

Assuming small displacements, a Taylor series expansion gives 

= v + ~ + ¢ . w  + ½ ¢ ~ : v v v  + o(1¢1% V ~ 

With this expression for v', I Ib can be expressed as 

1 ¢ ~ 1 1 . .  - ~ v  -w = -~V.V-~v.v- V.~ s. 

The term IId is rearranged as 

~L.(~L__ p) = V 'V  + V ' f f  s -  P) + ~s.v. 

It is now straightforward to rewrite n as 

Ic 

1 - -  DE zc = l f i L - -  ~ ' ~  + + V ' ( U - -  P). 

[59] 

[60] 

[61] 

[62] 

[63] 

MF 23 '3  E 
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Term Ili .  The flow studied is turbulent  and we use wall functions to prescribe boundary  
condit ions in the log-layer away f rom the walls where the viscous term is negligible, Accordingly 
term II l  is neglected. 

Term IV. We introduce the following definitions: 

<F)  -= V. (v 'v '> ,  [64] 

P --- V.v 'v ' ,  [65] 

~ (F> - F. [661 

With these definitions, the term IV can be writ ten 

V(x + ~ ) . ( F ) .  [67] 

Insert ing the Taylor  series expansion of  (F (x  + ~, t ) )  abou t  x 

<F(x + ¢, t)> = <F(x, t)> + V<F(x, t)>.¢ + O(1~] 2) [68] 

into [67] gives 

IV = F(x, t) + V¢.F(x,  t) + ¢ 'VF(x ,  t) + O(1¢1=), [69] 

where the relations ~ = 0 and ( =  0 have been used. In this work  the direct interact ion between 
turbulence and waves has been neglected. Tha t  implies ~" = 0, and in accordance with this 
simplification only the first term is retained and IV becomes 

IV = V.v 'v ' .  [70] 

The mean  Eulerian m o m e n t u m  equat ions are writ ten as 

V-VV = - V r t  - V.v 'v '  + ~s x V x V + (V + ~s) x V x (~s _ p),  [71] 
-y 

g 

where 

zt = I / ~ L -  ~ v . v  + + V - ( ~ s -  P). [72l 

A P P E N D I X  B 

The Displacement Field 

F r o m  a given per turba t ion  velocity field the corresponding displacements  are developed. This 
was done  by Cra ik  (1982a) for one plane wave (Fourier  componen t )  dis turbing a unidirectional 
mean  shear flow. The  wave field with the interfacial model  B in section 2.2 is the same as the one 
Cra ik  used. The  cor responding  displacements  for this case are presented below and we refer to 
Cra ik  (1982a) for more  details. In the interfacial model  A the interface deformat ion  was composed  
o f  two crossing plane waves. We show the deve lopment  o f  the displacements  for this wave field. 

Interfacial model B 

A unidirectional,  O(1) shear flow [0, 0, [,f/(y)] is per turbed by an O(c~) wave dis turbance given by 

= 0, [73] 

= ~, real[q~, (y)e ik,,~ .... 'q, [74] 

where 

~?' = E, r e a l [ -  iq~-O')e 'k, ~-~ -"q,  [751 

q~:O') = - dp,.,Ik,,. [76] 



WAVE INDUCED SECONDARY MOTIONS 

The displacements were given by Craik (1982, [3.2]) and read 

~.,. - -  0, 

c~.,.(y) sin[k,,.(z - c t ) ]  + O(e~), 
¢"-k , , . (17¢_c)  

) ¢"= \k~c) + q)-(y) k,,,(~-c) cos[k , , ( z  - ct)] + O(d). 
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[77] 

[781 

[79] 

Interfacial model A 

A unidirectional, O(1) shear flow [0, 0, l~(y)] is perturbed by an O(E0 wave disturbance given by 

[801 

[81] 

[82] 

= el real[2~bx (y)cos flxe ''l:-'')e°'], 

= E, real[2q~,. (y)sin flxe i'(: -"%~'1, 

= e~real[- i2~b: (y)sin flxe "(- -"e"] ,  

where ~b.,.(y) and ~b-(y) are given by 

~b:(y) = -~,,. ~y,. 4- -~ W - c j  

[83] 

[84] 

The velocity field is temporarily multiplied with the exponential growth term e ''. A fluid particle 
in the position (Xo, Yo, Zo) at some initial time to has the position (X, Y, Z) for t > to given by 

X(t)  = Xo + u[X(s), Y(s), Z(s)]ds, [85] 

f r ( t )  = ro  + [X(s) ,  Y(s), Z(s)]ds, [86] 

Z( t )  = Zo + w[X(s), Y(s), Z(s)]ds, [87] 

where u, v and w are the velocity components. To O(1) only the mean axial flow exists and we 
obtain 

X(t)  = Xo, [88] 

Y(t)  = Yo, [89] 

Z( t )  = Zo + lYV(y)(t - to). [90] 
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To O(E,) also the wave perturbat ion velocity components  contr ibute to the position (X, Y, Z). The 
derivation of  the X(t) coordinate will be given in some detail. 

X(t) = Xo + oreal  2q~(Y0)cos flXoe '~(z''+ "~'~ ...... ~-"~e°'ds [91] 
t_,dt 0 

,[-2~b~(ro)cos f iXo  al,o~(i_ii)3 [92] = X0 + e,reamL ~ g ; g  e"z" 

I = e t'~g' '~ + <' [93] 

/ / =  eti~t a.- ,.~ + ,1,% [94] 

The per turbat ion is assumed to grow initially from zero to a small O(E,) value, when a ---, 0. That  
is, we put  a = 0 in I. In addit ion we choose to = - ~ which gives H = 0. X(t) is then given by 

X ( t )  = Xo  -~-/71 real F -2~bx (Y°-~)c°s--flX° e,~, ~ -'"~]. [951 
k i~(W--c) 3 

Similarly, one finds that Y(t) is given by 

f 242,.( Yo)sin flXo ,,,~ ] V(t) = r,, + E,rea, L ~ - - .  _ ~7;. e ,0j. [96] 

To O(E~) there will be an extra contr ibut ion from the primary flow to the Z(t) coordinate.  A Taylor 
series expansion of  W(Y) about  110 reads 

.- . . . .  [2q~,. ( Yo)sin~ +gflX° '"e"'] W(Y) = ff'(Yo) + w , , . t r o ) E , r e a , [ ~  e '~'z ~ + Off,)  2, [97] 

where a is still retained. The Z(t) coordinate  is now found to be 

,Q'W,(Yo)2~b,(Yo)~_~ ) i~(~v-sin flX0c) e'~:-"q" [98] Z(t) -- Zo + W(Yo)(t - to) + E,rea , [k  - i2qS:(Vo) 

The displacements to O(<)  are hence given by 

~ = 2~ real [ 5b~ ()'!cos fix e,~, .. '"'l [99] 
k ic¢(W -- c) _] 

26 real ~ o-, O' )sin flx e '=: "]  [100 l 
{ '  = ' [_ ic~(l~--c)  J '  

2¢roa,  F{l~v,,.qs.,.(y ) ) s infix e,~, .. ] [101] 
Lk i~( l 'V-  c) iO:(Y) i~(['~'-- c) 

Note  the change from Xo to x, Y0 to y and Zo + W(Yo)(t - to) to z in accordance with the G L M  
description. 


